Microbiological Testing and Performance of Sampling Plans

> Marcel Zwietering Wageningen University ICMSF Member since 2005

Probability that no contamination is found

P _{defective}	<i>n</i> =1	<i>n</i> =2	<i>n</i> =5	<i>n</i> =30
	1- P _{def} =	(1- P _{def}) ² =	(1- P _{def}) ⁵ =	$(1 - P_{def})^{30} =$
0.00	1.00	1.00	1.00	1.00
0.01	0.99	0.98	0.95	0.74
0.05	0.95	0.90	0.77	0.21
0.10	0.90	0.81	0.59	0.04
0.15	0.85	0.72	0.44	0.01
0.20	0.80	0.64	0.33	0.00
0.25	0.75	0.56	0.24	0.00
0.30	0.70	0.49	0.17	0.00

1 % defectives of 100,000 products, means 1,000 products

$$P_{accept} = (1 - P_{defective})^n$$

Probability of accepting a lot, c=0

proportion defective products in a batch

MISCONCEPTION

Using a realistic sampling scheme, it is possible to test for absence of a pathogen in a batch of food.

MISCONCEPTION

Current sampling plans assume that microorganisms follow the binomial distribution.

If $c \neq 0$ $P_{accept} = binomial(k \leq c, n, P_{defective})$

þ

22	113	94	49
8	10	93	105
520	59	81	17
19	101	36	33

Heterogeneous high-level contamination

MISCONCEPTION

Current sampling plans assume that microorganisms are homogeneously distributed in a batch.

$$\begin{aligned} P_{defective} &= P_{normal}(\log_{10} C > m, \mu_{\log C}, \sigma_{\log C}) \\ &= 1 - P_{normal}(\log_{10} C \le m, \mu_{\log C}, \sigma_{\log C}), \end{aligned}$$

OC curve: Operating Characteristic

 $P_{accept}(c, n, P_{defective}) = binomial(k \le c, n = n, P = P_{defective})$ n=5 $n=10; \sigma = 1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.

 $n=10; \sigma = 1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.

$$\log_{10}(\bar{C}) = \overline{\log_{10} C} + 0.5 \cdot \ln 10 \cdot \sigma_{\log_{10} C}^2$$

C

$$P_{defective} = \int_{-\infty}^{\infty} \left[P_{concentration} \cdot P_{detect} \right] d \log C$$

 $P_{detect} = 1 - Poisson(0, \hat{n}_{cells})$

$$= \int_{-\infty}^{\infty} [P_{normal}(\log C, \mu_{\log C}, \sigma_{\log C}) \cdot (1 - Poisson(0, \hat{n}_{cells})]d \log C$$

 $n=60; \sigma = 1.2 (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) log_{10} CFU/g.$

Three statistical phenomena are relevant:

1. the actual spatial distribution of microorganism in the food batch,

2. the statistical process of taking a sample unit and it being defective

3. the acceptance of the lot based on *n* sample units, of which *c* are accepted to be positive and $P_{defective}$

For example

1. organism lognormally distributed in product

2. taking one sample is a Poisson process

 $P_{\text{defective}}$ is a Poisson-lognormal distribution of contaminant in the sample unit

3. P_{accept} of a lot based on $P_{defective}$, *n* sample units, and *c* is a binomial process

*P*_{accept} is then a Binomial(Poisson(LogNormal)) distribution !

http://www.icmsf.org

Conclusions

- Control of safety is only to a very limited extend supported by end-product testing
- Distributions can be relevant for performance of sampling plans
- As function of the arithmetic mean the effect of the spread is limited
- Tools exist !

see http://www.icmsf.org