Microbiological Testing and Performance of Sampling Plans

Marcel Zwietering
Wageningen University

ICMSF Member since 2005
Probability that no contamination is found

1 % defectives of 100,000 products, means 1,000 products

\[P_{accept} = (1 - P_{defective})^n \]
Probability of accepting a lot, \(c=0 \)

With 5 times more samples probability of acceptance 7.7 times lower!

MISCONCEPTION

Using a realistic sampling scheme, it is possible to test for absence of a pathogen in a batch of food.
MISCONCEPTION
Current sampling plans assume that microorganisms follow the binomial distribution.

\[P \text{ (accepting batch): depends on } n, c, P_{\text{defective sample}} \]

If \(c \neq 0 \) \(P_{\text{accept}} = \text{binomial}(k \leq c, n, P_{\text{defective}}) \)
MISCONCEPTION

Current sampling plans assume that microorganisms are homogeneously distributed in a batch.

![Table and Diagram]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>113</td>
<td>94</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>93</td>
<td>105</td>
</tr>
<tr>
<td>520</td>
<td>59</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>101</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

Heterogeneous high-level contamination
\[P_{\text{defective}} = P_{\text{normal}}(\log_{10} C > m, \mu_{\log C}, \sigma_{\log C}) \]
\[= 1 - P_{\text{normal}}(\log_{10} C \leq m, \mu_{\log C}, \sigma_{\log C}), \]
\[P_{\text{accept}}(c, n, P_{\text{defective}}) = \text{binomial}(k \leq c, n = n, P = P_{\text{defective}}) \]

\[n=5 \]
$n=10; \sigma = 1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.
\(n=10; \sigma = 1.2 \) (brown), \(1.0 \) (blue), \(0.8 \) (purple), \(0.6 \) (red), \(0.4 \) (orange), and \(0.2 \) (yellow) \(\log_{10} \) CFU/g.
\[P_{detect} = 1 - Poisson(0, \hat{n}_{cells}) \]

\[P_{defective} = \int_{-\infty}^{\infty} [P_{concentration} \cdot P_{detect}] d \log C \]

\[= \int_{-\infty}^{\infty} [P_{normal}(\log C, \mu_{\log C}, \sigma_{\log C}) \cdot (1 - Poisson(0, \hat{n}_{cells}))] d \log C \]
$n=60; \sigma = 1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) log$_{10}$ CFU/g.
Three statistical phenomena are relevant:

1. the actual spatial distribution of microorganism in the food batch,
2. the statistical process of taking a sample unit and it being defective
3. the acceptance of the lot based on n sample units, of which c are accepted to be positive and $P_{\text{defective}}$

For example
1. organism lognormally distributed in product
2. taking one sample is a Poisson process
 $P_{\text{defective}}$ is a Poisson-lognormal distribution of contaminant in the sample unit
3. P_{accept} of a lot based on $P_{\text{defective}}$, n sample units, and c is a binomial process
 P_{accept} is then a Binomial(Poisson(LogNormal)) distribution!
http://www.icmsf.org

This sampling plan would provide 95% confidence that a lot of food containing a median concentration of 1 organism in 177.7 g and an average concentration of 1 organism in 32.8 g (and having a standard deviation of 0.80 log cfu/g), would be rejected (i.e. more than 0 out of 10 samples of 25 grams giving detection of the organism).
Conclusions

• Control of safety is only to a very limited extend supported by end-product testing
• Distributions can be relevant for performance of sampling plans
• As function of the arithmetic mean the effect of the spread is limited
• Tools exist!

see http://www.icmsf.org