International Commission on Microbiological Specifications for Foods (ICMSF)

Food safety risk and principles of sampling and testing of microorganisms in foods.

Marcel Zwietering
Laboratory of Food Microbiology
Wageningen University

Chairperson ICMSF

We want to have zero risk in our food!

The consumer wants zero risk for sure The company wants to have zero risk The Food Safety Authority wants zero risk

Zero risk does not exist... !
Just like zero traffic accidents: zero deaths in traffic is impossible

Inactivation is never absolute (OK almost never)

- Misconception 1:
- "if the level in the raw material is maximally $10^{3} \mathrm{cfu} / \mathrm{ml}$, a >3D reduction would kill all organisms"
- In 100 ml there would be $10{ }^{5}$ cfu so still 100 left !

Inactivation is never absolute

- Misconception 2:
- "So for a product with maximally $10^{3} \mathrm{cfu} / \mathrm{ml}$ and for a 100 ml amount (10^{5} cfu total), a >5 D reduction would kill all organisms"
- So for a 6D reduction 10^{5} cfu would reduce to $0.1 \mathrm{cfu} / 100 \mathrm{ml}$
- Fractional cells do not exist so the product is "sterile"
- No: in every 10 products 1 survivor is present (that could grow and make someone ill

Inactivation is never absolute

- So for a 12D reduction $10^{5} \mathrm{cfu}$ would reduce to $10^{-7} \mathrm{cfu}$
- This is 1 in 10 million products... still not zero, but OK, this could be an ALOP (Appropriate Level of Protection; WTO term)
- Zero risk does not exist. But how low a risk do we want to achieve
- as a society: government, consumers; food industry ?
- per serving / per year / per lifetime

Inactivation is never absolute

- in 100 billion cans worldwide yearly, with $\mathrm{No}=1$ spore per can,
- $\mathrm{D}_{121}=0.21 \mathrm{~min}, \mathrm{z}=10^{\circ} \mathrm{C}$
$2.5 \mathrm{~min} 121^{\circ} \mathrm{C}=12 \mathrm{D} ; 10^{11} \cdot 1 \cdot 10^{-12}=0.1$ cases per year one case worldwide every 10 years
$3.0 \mathrm{~min} 121^{\circ} \mathrm{C}=14.3 \mathrm{D} ; 10^{11} \cdot 1 \cdot 10^{-14.3}=0.00052$ cases per year one case worldwide every 1930 years

Often $F_{0}>3$ min to reduce spoiling spores.... so almost absolute Inactivation of Salmonella at $121^{\circ} \mathrm{C}$ for 3 min (3145545 D reduction !) is really virtually zero so "almost never" a consumer risk

Testing is never absolute

Misconception 3: We tested 5 samples and they were negative so the organism is absent!

- 100000 chocolate bars of 25 g a day with 1 in 10000 containing 1 Salmonella
- 5 samples of 25 g tested per day
- how many detects per year ?
- probability of a case per year ?

Testing is never absolute

- 5 samples tested per day, 1 in 10000 containing 1 Salmonella
- $P_{\text {detect }}=5 / 10000=0.0005$ per day (1-(1-0.0001)^5)
- $=0.1825$ per year
- = 1 detect every 5.5 years !
- so that is under control ?

Testing is never absolute

- 100000 chocolate bars of 25 g a day with 1 in 10000 containing 1 Salmonella = 10 Salmonella per day
- 1 Salmonella has 1:400 probability of illness
- 10 per day is 3650 Salmonella per year
- 3650/400=9.1 illness per year

■ under control ? 9.1 cases!..... "outbreak" ?

- but risk per serving=9.1/36 $500000=1$ per 4000000

End product testing useful or lottery ?

Positives mean something, negatives are no guarantee

MISCONCEPTION 3

If the tested sample units are negative, the batch is free of the pathogen.

Not homogeneously distributed

- Microorganisms can be heterogeneously distributed
- Taking a sample is a stochastic process
- Performing a sampling plan ($\mathrm{n}=10$) is a stochastic process
- Testing methods are not perfect

Testing is no control but can be used for verification

UNIVERSITY \& RESEARCH

Distribution of microorganisms in foods

Contamination site: often on surface

Impact of Microbial Distributions on Food Safety http://ilsi.eu/wp-content/uploads/sites/3/2016/06/ Microbial-Distribution-2010.pdf

Distribution of microorganisms in foods

Dynamic levels (1)

- Growth
- Local clustering

Distribution of microorganisms in foods

Dynamic levels (2)

- Death

- Mixing

Distribution of microorganisms in foods

Dynamic levels 3

- Joining

- Fractioning

Sampling is a stochastic process

- Microorganisms can be heterogeneously distributed
- Taking a sample is a stochastic process
- Performing a sampling plan $(\mathrm{n}=10)$ is a stochastic process
- Tools exist !

http://www.icmsf.org

Probability density function (PDF) for log counts.
Distribution mean $=-2.25$ and sigma $=0.80$

INPUTS		P(accept)		
mean	-2.25	Computed	5.00 \%	
sigma	0.80	Desired	5%	
m	-1.40	Find mean that gives desired P (accept)		
n	10			
	0			
amount	25 g	Find n that gives desired P(accept) or better (less)		
		Preject	95.00	

Means and median					
Arithmetic			Geometric=median		
one cfu in	0.0307	cfu/g		0.0056	cfu/g
	32.6	ams	one cfu in	177.7	ams
	-1.51	cfu/g		-2.25	cfu/g

Operating characteristic curve scaled to relate log arithmetic mean count to m

ALTERNATIVE n AND c		P(accept)		
mean	-2.25	Computed	0.91	\%
sigma	0.80	Target, left	5.00	\%
m	-0.98			
n	30	For any value of n and c imputed find the m that gives the same P (accept) as the model on the left		
c	0			
amount	9.6 g			

Implied Acceptance level				
Percentile	z-score	Concentration at this percentile		
99.9	3.10		0.23	

This sampling plan would provide 95% confidence that a lot of food containing a median concentration of 1 organism in 177.7 g and an average concentration of 1 organism in 32.6 g
(and having a standard deviation of $0.80 \log$ cfu/g), would be rejected (i.e. more than 0 out of 10 samples of 25 grams giving detection of the organism)

Scale of the risk

- risk per serving

■ risk per person per year

- risk per person per lifetime
- cases per year
- cases per million population

Consumer: risk per serving
Consumer: risk per person per year
Consumer: risk per life-time
Producer: cases per year
Government: cases per million people

UNIVERSITY \& RESEARCH

1 per 4000000
1 per 80000 (50 bars per year)
1 per 1000 (80 years life expectancy)
9.1 cases per 36.5 million bars
12.5 cases per million people

Examples of risk per serving of several diseases from RTE foods, risk per person per year, cases per year and cases per million population

Food product	Hazard	Region	Risk per serving	Risk per year per person	Cases per year	Cases/million population	Source
Deli meat	L. monocytogenes	USA ${ }^{\text {a }}$	7.7.10 ${ }^{-8}$	$5.5 \cdot 10^{-6}$	1599	5.5	[23]
Unpasteurised milk	L. monocytogenes	USA ${ }^{\text {a }}$	7.1.10 ${ }^{-9}$	1.1.10 ${ }^{-8}$	3.1	0.011	[23]
Smoked seafood	L. monocytogenes	USA ${ }^{\text {a }}$	$6.27 \cdot 10^{-9}$	$4.5 \cdot 10^{-9}$	1.3	0.0045	[23]
Pasteurised milk	L. monocytogenes	USA ${ }^{\text {a }}$	1.0.10 ${ }^{-9}$	3.1-10 ${ }^{-7}$	90.8	0.31	[23]
Vegetables	L. monocytogenes	USA ${ }^{\text {a }}$	$2.8 \cdot 10^{-12}$	6.9.10 ${ }^{-10}$	0.2	0.00069	[23]
Hard Cheese	L. monocytogenes	USA ${ }^{\text {a }}$	4.5.10 ${ }^{-15}$	1.4.10 ${ }^{-13}$	<0.1	<0.00035	[23]
Fermented meats	L. monocytogenes	Worldwide ${ }^{\text {b }}$	$2.5 \cdot 10^{-12}$	$6.6 \cdot 10^{-8}$	514.8	0.000066	[24]
Beef	L. monocytogenes	Brazil ${ }^{\text {c }}$	$8.1 \cdot 10^{-6}$	1.2.10 ${ }^{-6}$	252	0.0000012	[25]
Beef	Salmonella	Brazil ${ }^{\text {c }}$	4.7.10 ${ }^{-3}$	8.6.10 ${ }^{-4}$	179,496	0.00086	[25]
Leafy green vegetable salad	Salmonella	The Netherlands ${ }^{\text {d }}$	$6.83 \cdot 10^{-6}$	1.1-10 ${ }^{-5}$	187	10.82	[26]
Oysters	Vibrio	USA ${ }^{\text {a }}$	$\begin{aligned} & 4.5 \cdot 10^{-4} \text { to } \\ & 8.1 \cdot 10^{-1} \end{aligned}$	$9.7 \cdot 10^{-6}$	2826	8.6	[27]
Oysters	Vibrio	Taiwan ${ }^{\text {e }}$	$8.56 \cdot 10^{-5}$	2.8.10 ${ }^{-6}$	67	2.8	[28]
Shrimps	Vibrio	Malaysia ${ }^{\text {f }}$	$4.80 \cdot 10^{-6}$	$3.9 \cdot 10^{-6}$	123	12	[29]

All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk

$1.5 \cdot 10^{-7}$
$1.25 \cdot 10^{-5}$

does not exist

Marcel H Zwietering ${ }^{1}$, Alberto Garre ${ }^{1}$, Martin Wiedmann ${ }^{2}$ and Robert
L Buchanan ${ }^{3,4}$

Fig. 3. The distribution of the estimated L. monocytogenes dose from contaminated pasteurized milk (blue distribution) and its location in scenarios with illness (orange bar above; barcode chart). The scale and x-axis grid of the above orange barcode chart is same as that of the below blue distribution of Log dose of contaminated dose scenario. The contaminated dose scenario was 0.04% of all scenarios: the doses of the 99.96% of all simulated scenarios were zero.

Temperature status of domestic refrigerators and its effect on the risk of listeriosis from ready-to-eat (RTE) cooked meat products

Wieke P. van der Vossen-Wijmenga ${ }^{a b} \circ$, Heidy M.W. den Besten ${ }^{\circ} \bigcirc$, Marcel H. Zwietering. ${ }^{\text { }}$

65 cases per 1 billion servings

FDA/FSIS: : 77 cases per 1 billion servings

It is a matter of probability, of low probability

US estimates microbiological food borne illnesses per year (Scallan et al. 2011) (31 pathogens)

```
Pill = 1:32 9 400 000 cases
Pdeath=1:220 000 1351 deaths
```

31000 per million
4.5 per million
2.5 times per lifetime 0.00036 per lifetime

```
NL estimates microbiological food borne illnesses per year (RIVM) (14 pathogens)
\begin{tabular}{llll} 
Pill \(=1: 25\) & 680000 cases & 40000 per million & 3.2 times per lifetime \\
Pdeath=1:220 000 & 80 deaths & 4.6 per million & 0.00037 per lifetime
\end{tabular}
```


In perspective

700000 cases per year in the NL that is dangerous !
That is $17 \mathrm{M} / 700000=1$ times in 25 years 3 times per lifetime

Prevention paradox! with all controls

Conclusions

- 6D or 12D are not absolutes, but reduce risk with a factor million or trillion
- All samples being negative is no guarantee of safety
- A positive sample is indicating unsafety
- Control of safety is only to a very limited extend supported by end-product testing (verification only)
- Tools to determine performance do exist
- With large production volumes very low probabilities can give illness cases
there is a small residual risk there is negligence there is stupidity
.... live with it
.... prevent it
.....prevent it

