

International Commission on Microbiological Specifications for Foods (ICMSF)

Useful Microbiological Testing for Meat and Poultry Products

Kiran Bhilegaonkar

Principal Scientist and Head
Division of Veterinary Public Health
Indian Veterinary Research Institute
Bareilly, India

Presentation Out-line

- Introduction
- Examples from chapter on Meat and Meat Products
 - Cooked meat
- Examples from Poultry chapter
 - Dried poultry meat
- FSSAI-ICMSF-CHIFSS India Experience

Meat: Facts and Figures

Meat an important international food commodity

Most produced (by value) food commodity in the world

Global meat production : Almost **five times increase** in 50 years

1963: 78 million tonnes

2023: 363.9 million tonnes

Total Production		\$2,006,628,429,224				
Rank	Commodity	Int'l \$	% Of Total			
1	Milk, Cow	\$198,338,449,276	9.88%			
2	Rice, paddy	¢100,576,416,113	9.50%			
3	Pork	\$172,682,907,041	8.61%			
4	Beef	\$171,163,310,870	8.53%			
5	Chicken	\$137,224,034,261	6.84%			
6	Wheat	\$85,042,102,553	4.28%			
7	Soybeans	\$69,476,638,751	3.46%			

Important Vehicle - Food Commodities

Estimates of foodborne illnesses attributed to specific food commodity groups, by pathogen type, United States, 1998–2008*

Commodity or	% illnesses							
commodity group	All agents	Bacterial	Chemical	Parasitic	Viral			
Aquatic animals	6.1	3.9	61.6	33.3	3.9			
Land animals	41.7	64.0	13.3	0.1	30.0			
Plants	51.1	32.1	25.2	29.5	65.8			
Undetermined	1.1	0.0		37.1	0.3			

I V R I

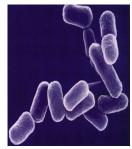
USA Foodborne Illness by Product Type

Batz et al 2012

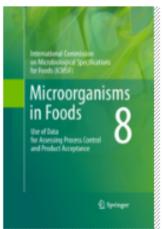
TABLE ES-3: DISEASE BURDEN BY FOOD CATEGORY, SUMMED ACROSS PATHOGENS, BY COMBINED RANK

	FOOD CATEGORY	QALY Loss	COST OF ILLNESS (\$ MIL.)		HOSPITAL- IZATIONS	DEATHS
1	Poultry	14,744	2,462	1,538,468	11,952	180
2	Complex foods	7,518	2,078	3,001,858	11,674	189
3	Pork	7,830	1,894	449,322	4,334	201
4	Produce	6,171	1,404	1,193,970	7,125	134
5	Beef	5,766	1,338	760,799	4,818	131
6	Deli/Other Meats	5,065	1,338	204,293	1,889	129
7	Dairy products	5,410	1,232	297,410	2,933	114
8	Seafood	2,762	921	642,860	2,937	97
9	Game	2,551	651	46,636	1,106	69
10	Eggs	2,252	428	170,123	2,472	45
11	Baked goods	988	273	462,399	1,833	25
12	Beverages	403	94	146,577	606	8
	TOTAL	61,461	14,114	8,914,713	53,678	1,322

Meat-borne Pathogens


- Meat/ Poultry: Excellent support for microbial growth
- Important source of pathogens
 - Salmonella
 - Listeria monocytogenes
 - Campylobacter spp.,
 - Pathogenic E. coli (including O157:H7 / other EHEC)
 - Yersinia enterocolitica
 - Clostridium perfringens

LISTERIA MONOCYTOGENES



Microorganisms in Foods 8

Use of Data for Assessing Process Control and Product Acceptance International Commission on Microbiological Specifications for Foods (ICMSF)

2011, 2011, XX, 400 p. 12 illus.

Available Formats:

Hardcover i

Part II

Application of Principles to Product Categories

- Chapter 8: Meat Products pg 75 -94
- Chapter 9: Poultry Products pg 95-106

Chapter 8: Meat Products

Sub-categories of 'meat'

- Raw meat products (excluding comminuted meats)
- Raw comminuted meats
- Raw cured shelf stable meats
- Dried meat products
- Cooked meat products
- Fully retorted shelf-stable uncured meats
- Shelf-stable cooked cured meats
- Snails and Frog Legs

Category: Sub-heads

Each category is discussed under following headings

Significant organisms

Relative importance and usefulness of Microbiological testing data

- Critical ingredients
- In-process
- Processing environment
- Shelf life
- End product

Cooked Meat Products (Perishable cured and uncured)

Examples

- Cooked sliced beef
- Pate
- Meat pies
- Cooked Ham

Main Pathogens

- Salmonella (all)
- L. monocytogenes (all)
- C. perfringens (all uncured)
- Campylobacter (pork)
- EHEC (Beef, lamb or goat products)
- S. aureus (all not in-pack processed)

Hazards in some regions

- Yersinia (pork)
- Trichinella (pork)

Relative importance		Useful testing
Critical ingredients	Low	These products do not contain non-meat ingredients of significance for microbiological safety or quality
In-process	High	Monitoring the cooking parameters is essential (TIME AND TEMPERATURE)
	Medium	For products that support <i>L. monocytogenes</i> growth, post-cook samples can assess control of <i>Listeria</i> spp. Typical levels encountered post-cook: Absence of <i>Listeria</i> spp.

Relative importance		Useful testing
Processing environment	High	For products that support <i>L. monocytogenes</i> growth, during production sample product contact surfaces before packaging. Environmental sampling programme ongoing (floors, drains and non-product contact surfaces) for absence of <i>Listeria</i> spp.
	Medium	Sample equipment surfaces before startup to verify cleaning and disinfection. e.g. ACC typical levels encountered <500 cfu/cm ² may vary by surface type.
Shelf life	Medium	Shelf life testing may be useful for refrigerated products with extended dates. Shelf life testing of frozen products is not necessary

	lative ortance		Useful testing (Indicators)						
End product	Medium	Test for indicate	Test for indicators of ongoing process contro					nalysis ın & limi	
•		Product	Microorganism	Analytical method	Case	n	С	m	M
		Cooked Meat	Aerobic colony count	ISO 4833	2	5	2	10 ⁴	10 ⁵
			E. coli	ISO 16649-2	5	5	2	10	10 ²
			S. aureus	ISO 6888-1	8	5	1	10 ²	10 ³
CWS F		Cooked uncured meat (e.g. roast beef)	C. perfringens	ISO 7937	8	5	1	10 ²	10 ³

Relative importance

Useful testing (Pathogens)

Campalina plan 0 limita/0Ea

End Medium product

Routine sampling for pathogens is not recommended unless the application of **GHP or HACCP is in question**. The following testing is then recommended:

		Analytical	Samp	Sampling plan & limits/250			5g
Product	Microorganism	Analytical method	Case	n	С	m	M
Cooked Meat	Salmonella	ISO 6579	11	10	0	0	-
Cooked Meat (supports growth)	L. monocytogenes	ISO 11290-1	N/A	5	0	0	-
Cooked Meat: no growth	L. monocytogenes	ISO 11290-2	N/A	5	0	10 ²	त्सा अनुस्ता क

Plan Performance Examples: cooked meat

- Geometric mean concentration (cfu/g) at 95% probability of rejection (table A2 pg 361)
 - PLAN: *E. coli* n=5 c=2 m=10 M=100

» S.d.
$$(0.25) = 17$$
 S.d. $(0.5) = 25$

»
$$S.d.(0.8) = 33$$
 $S.d.(1.2) = 39$

- Geometric mean concentration (per g or ml) at 95% probability of rejection (table A3 pg 362)
 - PLAN: L. monocytogenes n=5 c=0 m=0 (25g)

» S.d.
$$(0.25) = 1$$
 cell in 44 g S.d. $(0.5) = 1$ cell in 49 g

» S.d.
$$(0.8) = 1$$
 cell in 55 g S.d. $(1.2) = 1$ cell in 62 g

Chapter 9: Poultry Products

Sub-commodities of Poultry Products

- Raw poultry products
- Cooked poultry products
- Fully retorted shelf-stable poultry products
- Dried Poultry Products

Dried Poultry Products

- Examples
 - Dried cooked chicken
 - Bouillon powder/paste
 - Dried salted chicken strips

- Main Pathogens
 - Salmonella

Dried Poultry Product Testing

Relative importance		Useful testing
Critical ingredients	Low	These products do not contain non-meat ingredients of significance for microbiological safety or quality
In-process High		Monitoring the cooking and formulation parameters like pH and preservatives. The manufacturing process should be validated for control of salmonellae that are present in poultry meat
	Low	Routine microbiological testing of in-process samples is not recommended

Dried Poultry Product Testing

Relative importance	Useful testing
Processing Mediuenvironment	Sample equipment surfaces before startup to verify cleaning and disinfection. E.g. ACC typical levels encountered <500 cfu/cm² but may vary by surface type.
Shelf life Low	These products are inherently shelf-stable when properly dried and protected from high humidity. The higher the a _w of snack products may require verification of stability e.g. mould

Dried Poultry Product Testing

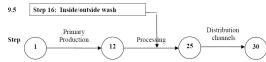
	lative ortance		Us	eful testing					
End product	Medium		npling is not nec n question , sar	, ,					
		Sampling pla limits/25							
		Product	Microorgani sm	Analytical method	Cas e	n	С	m	M
Mem		Dried Poultry	Salmonella	ISO 6579	11	10	0	0	सा अनुस्र

Plan Performance: Dried Poultry Products

- Geometric mean concentration (cfu per g) at 95% probability of rejection (table A3 pg 362)
 - PLAN: Salmonella n=10 c=0 m=0 (25g)
 - » S.d.(0.25) = 1 cell in 93 g S.d. (0.5) = 1 cell in 120 g
 - » S.d.(0.8) = 1 cell in 180 g
 S.d. (1.2) = 1 cell in 310 g

Codex

CAC/RCP 58-2005 Page 1 of 52


CODE OF HYGIENIC PRACTICE FOR MEAT1

CAC/RCP 58-2005

1. Introduction	3
2. Scope and Use of This Code	3
3. DEFINITIONS	4
4. GENERAL PRINCIPLES OF MEAT HYGIENE	8

GUIDELINES FOR THE CONTROL OF $\mathit{CAMPYLOBACTER}$ AND $\mathit{SALMONELLA}$ IN CHICKEN MEAT

CAC/GL 78-2011

9.5.1 GHP-based control measures

66. The inside and outside of all carcasses should be thoroughly washed, using pressure sufficient to remove visible contamination. Appropriate equipment should be used to ensure direct water contact with the carcass. The removal of contaminants may be aided by the use of brushing apparatus installed in line with the inside/outside wash.

9.5.2 Hazard-based control measures

For Campylobacter

67. Carcass washing systems with 1-3 washers using water with 25-35ppm total chlorine have been shown to reduce levels of *Campylobacter* by about 0.5 log₁₀ CFU/ml of whole carcass rinse sample. Postwash sprays using Acidified Sodium Chlorite (ASC) or TSP may further reduce *Campylobacter* levels by an average of 1.3 log₁₀ CFU/ml or 1.0 log₁₀ CFU/ml of whole carcass rinse sample respectively.

For Salmonella

68. Inside/outside washing using a spray application of 20-50 ppm chlorinated water has been shown to reduce the prevalence of Salmonella-positive broiler carcasses from 25% to 20%. A second inside/outside washing following upon the first resulted in a reduction of Salmonella-positive broiler carcasses from 16% to 12%.

Conclusions

- Microbiological testing to be used appropriately & pragmatically
- No food safety program can rely solely on microbiological testing
- ICMSF recommendations should be used as a guideline
- Legislative microbiological standards in national and international trade need to be applied and complied with
- The ICMSF sampling plan performance calculator can be used to evaluate alternative plans. (http://www.icmsf.org/main/software_downloads.html)

FSSAI-ICMSF-CHIFSS Activities - India

Microbiological Food Safety Capacity Building

- Development of short, simple Guidance Documents on useful sampling and testing for specific food sectors
- Development of training material based on ICMSF publications for the priority sectors such as Meat/Fish/Milk.
- Capacity Building and Dissemination of knowledge

Consultative Sessions – Poultry Industry

Mumbai Western India

FSSAI - CHIFSS - ICMSF Consultative Session

n

"Enhancing Microbiological Quality and Safety in Poultry Sector in India"

Venue: Confederation of Indian Industry (CII), 105, Kakad Chambers, 132, Dr Annie Besant Road,
Worli, Mumbai - 400 018

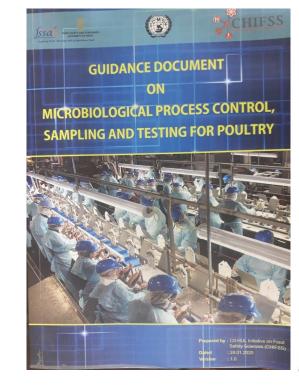
Date: 8th May'19 | Time: 1030 hrs - 1600 hrs

FSSAI - CHIFSS - ICMSF Consultative Session
on
"Enhancing Microbiological Quality and Safety in Poultry Sector in India

Venue: Confederation of Indian INDUSTRY (CII)

No.1086 | HAL 2nd Stage | 12th Main | Indiranagar | Bangalore - 560008

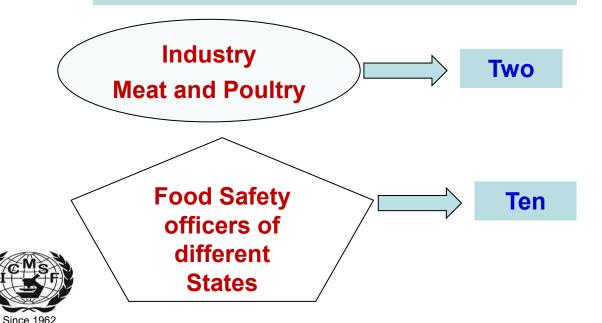
Date: 13th May'19 | Time: 1030 hrs - 1600 hrs

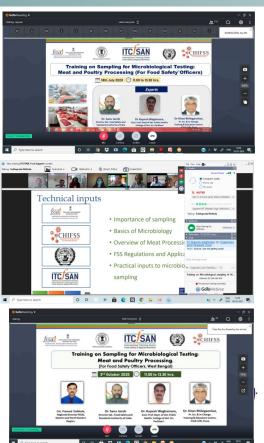

Bangalore Southern India

Guidance Document

Guidance Document

- Microbiological Process Control, Sampling and Testing for Poultry
- Released by Director NFL, FSSAI in January, 2020

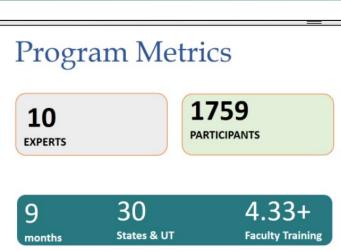



On-line Training Meat and Poultry

Sampling for Microbiological Testing:

Meat and Poultry

Collaborations with ITC FSAN



Training - Food Safety Officers of different States

10 Programs

Dr Sanu Jacob, FSSAI

Dr. Kiran Bhilegaonkar, ICAR IVRI

Dr Rupesh Waghmare

Dr Vijay Pal Sin

IVRI

On-line Trainings on

General Principles of Sampling for Microbiology

For Food Safety officers of States- 5

- West Region 2
- East Region 1
- South Region 1
- North Region 1

Consultative Sessions – Fisheries Sector Industry

Enhancing Microbiological

Quality and Safety for

Fisheries Sector in India

Two Sessions for FBOs

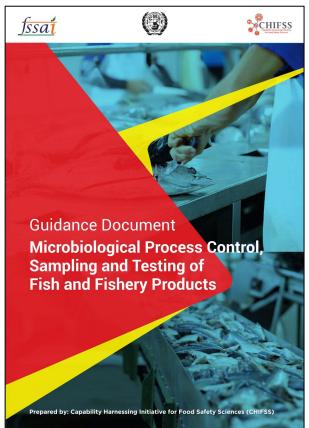
ICMSF - CHIFSS Consultative Session

or

"Enhancing Microbiological Quality and Safety for Fisheries Sector in India"

Date: 12th - 13th July 2021

Mode: Online


FSSAI - ICMSF – CHIFSS Two Day Digital Consultative Session on "Enhancing Microbiological Quality and Safety for Fisheries Sector in India" Date: 4th – 5th October 2021 Mode: Online

Guidance Document

Guidance Document

Microbiological Process
 Control, Sampling and
 Testing of Fish and Fishery product

On-line training Microbiology of Fish and Fish Products

Fish and Fish Products Food Safety Officers – 4

- Western Region
- Southern Region
- Northern Region
- Eastern Region

Hands-on Training Activities

Food Microbiological Techniques for **Meat and Poultry Industry Participants - Two**

- National Food laboratory, FSSAI
 Ghaziabad (Delhi) (20th -24thJanuary 2020)
- Mumbai Veterinary College, Mumbai. 21st -24th Dec. 2022.

FSSAI - CHIFSS-BVC-ICMSF

Collaborative

"Hands on Training - Food Microbiological Techniques for High Risk Foods-Meat and Poultry "

